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The antigenicity of tobacco mosaic virus

M. H. V. Van Regenmortel
UPR 9021 CNRS, Institut de Biologie Molëculaire et Cellulaire, 15 rue R. Descartes, 67084 Strasbourg Cedex, France

The antigenic properties of the tobacco mosaic virus (TMV) have been studied extensively for more than
50 years. Distinct antigenic determinants called neotopes and cryptotopes have been identi¢ed at the
surface of intact virions and dissociated coat protein subunits, respectively, indicating that the quaternary
structure of the virus in£uences the antigenic properties. A correlation has been found to exist between
the location of seven to ten residue-long continuous epitopes in the TMVcoat protein and the degree of
segmental mobility along the polypeptide chain. Immunoelectron microscopy, using antibodies speci¢c
for the bottom surface of the protein subunit, showed that these antibodies reacted with both ends of the
stacked-disk aggregates of viral protein. This ¢nding indicates that the stacked disks are bipolar and
cannot be converted directly into helical viral rods as has been previously assumed. TMVepitopes have
been mapped at the surface of coat protein subunits using biosensor technology. The ability of certain
monoclonal antibodies to block the cotranslational disassembly of virions during the infection process was
found to be linked to the precise location of their complementary epitopes and not to their binding
a¤nity. Such blocking antibodies, which act by sterically preventing the interaction between virions and
ribosomes may, when expressed in plants, be useful for controlling virus infection.

Keywords: antigenic structure; epitopes; immunoelectron microscopy; infectivity neutralization;
monoclonal antibodies; stacked disks

1. INTRODUCTION

The antigenic properties of tobacco mosaic virus (TMV)
have been studied extensively in many laboratories for
more than 50 years (Rappaport 1965; Benjamini 1977;
Van Regenmortel 1986). TMV is an excellent immunogen
and antibodies to the virus can be readily obtained by
immunization of experimental animals. By the 1930s, it
had already been observed that antiserum raised against
TMV was able to neutralize the infectivity of the virus,
and in the following decade quantitative aspects of the
reaction of TMV particles with speci¢c antibodies were
analysed in considerable detail by means of precipitin
tests (Rappaport 1965). After the TMV coat protein
(TMVCP) had been sequenced (Anderer et al. 1960;
Tsugita et al. 1960), it became possible for the ¢rst time to
locate the antigenic sites of a viral protein at the mol-
ecular level. Two antigenic sites of TMVCP were singled
out for analysis in these initial studies: the C-terminal
region corresponding to residues 153^158 (Anderer 1963)
and the disordered loop region corresponding to residues
93^112 (Benjamini et al. 1964, 1965; Young et al. 1966).

2. NEUTRALIZATION OF TMV INFECTIVITY WITH

ANTIPEPTIDE ANTIBODIES

Anderer and his colleagues tested peptides obtained by
tryptic degradation of TMVCP for their ability to inhibit
the precipitin reaction between virus and antibody, and
showed that the C-terminal hexapeptide possessed the
greatest activity. This hexapeptide, coupled to bovine
serum albumin, was used to raise antibodies in rabbits, and
the resulting antipeptide serum was found to precipitate

the virus and neutralize its infectivity (Anderer 1963;
Anderer & Schlumberger 1965). The speci¢city of the
reaction was demonstrated by the fact that the neutral-
izing activity of the antiserum could be abolished by
prior incubation of the antiserum with the hexapeptide.
The neutralization assay consisted of mixing infectious
virus with antiserum and assessing whether the number
of local lesions obtained after inoculating tobacco leaves
with the mixture was reduced compared with the number
obtained with untreated virus. This local-lesion assay in
tobacco is similar in principle to the plaque reduction test
used in animal virology for demonstrating antibody-
induced neutralization of animal viruses (Dimmock 1993;
Rappaport 1965). Since natural peptide fragments as well
as synthetic peptides were used in this work, Anderer and
his colleagues should be credited with the discovery that
synthetic peptides are able to elicit antibodies that
neutralize viral infectivity. The signi¢cance of these ¢nd-
ings for the development of synthetic vaccines was only
recognized 15 years later when similar results were
obtained with animal viruses (for reviews, see Arnon
1987; Arnon & Van Regenmortel 1992; Nicholson 1994).
Antibodies obtained by immunizing animals with the

conjugated C-terminal tripeptide of TMVCP were also
found to neutralize viral infectivity. An even more unex-
pected ¢nding was the demonstration that antibodies
prepared against the single terminal threonine residue of
TMVCP coupled to a carrier protein were also able to
precipitate the virus (Anderer & Schlumberger 1966;
Anderer et al. 1967). This result is probably due to the
particularly exposed location of the C-terminal residue
in TMVCP (Bloomer et al. 1978; Champness et al. 1976).
The speci¢city of these anti-threonine antibodies was
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demonstrated by the fact that they failed to precipitate a
related tobamovirus in which the C-terminal residue was
serine instead of threonine (Anderer & Schlumberger1966).

3. INTACT TMV PARTICLES AND DISSOCIATED COAT

PROTEIN SUBUNITS HARBOUR DIFFERENT

ANTIGENIC DETERMINANTS

Studies in the 1950s showed that the antigenic proper-
ties of intact TMV particles were di¡erent from those of
dissociated coat protein subunits. Some of the antibodies
present in TMV antisera were found to cross-react with
dissociated coat protein, whereas other antibodies reacted
only with intact virions (Jeener et al. 1954; Takahashi &
Ishii 1952). It was suggested by Aach (1959) that the
virion-speci¢c antibodies recognized antigenic deter-
minants that arose by juxtaposition of residues from
neighbouring protein subunits. Because the state of
aggregation of the viral subunits in£uenced their anti-
genic properties, a number of terms were introduced to
distinguish between the di¡erent antigenic determinants
found at the surface of virions and of dissociated subunits
(Van Regenmortel 1966). Since antigenic determinants
were referred to as epitopes (Jerne 1960), the new
epitopes that arise in the polymerized viral subunits as a
result of the quaternary structure were called `neotopes'.
Neotopes may be constituted by residues from neigh-
bouring subunits that are recognized as a single entity by
certain antibodies. On the other hand, since the inter-
subunit bonds that keep viral subunits together in the
virus particle alter the conformation of the subunits, new
conformational epitopes (i.e. neotopes) appear in the
virions that are not present in the protein monomers. In
practice, the structural basis of neotope speci¢city is
nearly always unknown, so the label neotope is given to
any epitope of the virus that is absent in the constituent
monomeric subunits.

When subunits polymerize, a portion of the protein
surface becomes buried and this leads to the disappear-
ance of certain epitopes found on the monomeric viral
protein. Such epitopes, which have been called crypto-
topes (Jerne 1960; Van Regenmortel 1966), become
accessible to antibodies only after dissociation of the virus
particle.

A third label, metatope, was introduced for epitopes
found in both dissociated and polymerized forms of the
viral protein (Van Regenmortel 1966, 1990). Initially,
the existence of antibodies speci¢c for neotopes, crypto-
topes and metatopes was established by cross-absorption
experiments (Aach 1959; Takahashi & Gold 1960). After
absorbing TMVCP antisera with virus particles, residual
antibodies reacting with dissociated subunits and
speci¢c for cryptotopes were shown to be present.
Conversely, TMV antiserum still reacted with the
neotopes present on virions after being depleted by
cross-absorption of all antibodies reacting with protein
subunits. With the advent of hybridoma technology, it
became easier to distinguish these di¡erent antigenic
speci¢cities with monoclonal antibodies (Al Moudallal
et al. 1982; Dore et al. 1988) and to map the position
of neotopes, metatopes and cryptotopes on the surface
of viral antigens (Dore et al. 1990; Saunal & Van
Regenmortel 1995b).

It should be noted that not all enzyme-linked immu-
nosorbent assay (ELISA) formats are equally suitable for
establishing whether monoclonal antibodies (Mabs)
react with neotopes, metatopes or cryptotopes. When the
ELISA plate is coated with a virus preparation in
carbonate bu¡er, pH 9.6, virions tend to dissociate into
subunits and these will bind preferentially to the plastic
of the microtitre plates. In this case, the antigen assayed
in the ELISA will be dissociated protein instead of intact
virions. The nature of the antigen that reacts in ELISA
can be visualized when the assay is carried out on
electron microscope grids deposited at the bottom of
microtitre wells, and the reacting antigen is subsequently
identi¢ed by immunoelectron microscopy after replacing
enzyme-labelled antibodies with gold-labelled Mabs
(Dore et al. 1988). When Mabs are selected in a hybri-
doma fusion experiment using an ELISA format in
which plates are coated with virus in pH 9.6 bu¡er, the
selected antibodies will usually be speci¢c for crypto-
topes or metatopes; Mabs speci¢c for neotopes will tend
to be discarded. To select anti-neotope Mabs, it is
necessary to use microtitre plates ¢rst coated with a
layer of virus-speci¢c antibodies, which will present
intact virions to the Mabs (Dore et al. 1988).
Immunoelectron microscopy using gold-labelled anti-

bodies has been used to visualize the location of neotopes
and metatopes on TMV particles (¢gure 1). Most Mabs
raised against TMVCP were found to be speci¢c for
metatopes (Al Moudallal et al. 1985) and were located at
one of the two extremities of viral rods. By partly unco-
vering the 5' end of the RNA in virus particles by the
action of 6M urea, it could be shown that these meta-
topes were located at the end of the virion containing the
5' end of the RNA (Dore et al. 1990).

It was also shown by immunoelectron microscopy that
these anti-metatope antibodies reacted with both ends of
stacked-disk aggregates of TMVCP. This implies that the
same face of the subunit, i.e. the one containing the two
helices corresponding to residues 73^89 and 115^135, is
exposed at both ends of the stacked disks (Dore et al.
1990). This ¢nding indicates that the stacked disks are
bipolar and cannot be converted directly into helical
viral rods, as had been assumed for many years
(Bloomer & Butler 1986; Durham et al. 1971; Butler, this
issue). These results also explain why so many anti-
metatope Mabs, recognizing the same surface of the
subunit, have been obtained from the hydridoma fusion
experiment with mouse spleen cells. The mice used for
hybridoma production had been immunized with
preparations of highly concentrated TMVCP, which
contained stacked disks, and it is the presence of the
same subunit surface at both faces of the disk that led to
the predominance of Mabs speci¢c for this surface (Al
Moudallal et al. 1985).

Since these anti-metatope antibodies bind to the
extremity of viral rods, which is known to become disas-
sembled ¢rst during the infection process (Wilson 1984),
experiments were done to assess whether these antibodies
were able to block the disassembly of virions and the trans-
lation of viral RNA. It was found that about half of the
anti-metatope antibodies that were analysed strongly inhib-
ited disassembly and RNA translation, while the others
inhibited only weakly or not at all (Saunal et al.1993).
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4. IDENTIFICATION OF CONTINUOUS AND

DISCONTINUOUS EPITOPES OF TMV

Epitopes are usually classi¢ed as either continuous or
discontinuous, depending on whether the amino-acid
residues in the epitope are contiguous in the polypeptide
chain or not. The label c̀ontinuous epitope' is given to
any short linear peptide fragment of a protein that can
bind to antibodies raised against the intact protein.
Usually the antibodies cross-react only weakly with the
peptide because the fragment does not retain the confor-
mation present in the folded protein. In addition, the
peptide often represents only a portion of a more complex
epitope.

Discontinuous epitopes comprise the vast majority of
epitopes found in proteins. They consist of clusters of
atoms from residues that are not contiguous in the
sequence but are brought near one another by the folding
of the polypeptide chain. When the protein is denatured
or fragmented into peptides, the residues that make up

the discontinuous epitope are scattered and each indivi-
dual component of the epitope is no longer recognized by
the antibody. Sometimes, an antibody to a discontinuous
epitope may still react with a linear peptide representing
only a portion of the epitope, in which case the peptide
will be called a continuous epitope although it actually
corresponds to part of a discontinuous epitope (Van
Regenmortel 1992).

A total of ten continuous epitopes have been identi¢ed
in TMVCP, using fragments of the coat protein obtained
by enzymatic cleavage as well as synthetic peptides
(table 1). The antigenic activity of the peptides was
measured by radioimmunoassay (Benjamini 1977),
inhibition of complement ¢xation (Milton & Van
Regenmortel 1979) and enzyme immunoassay (Altschuh
& Van Regenmortel 1982). The seven continuous epitopes
of TMVCP that were seven to ten residues long were found
to correspond to regions of the viral protein that were
shown by X-ray crystallography to possess a high
segmental mobility (Westhof et al. 1984). This correlation
between antigenicity and mobility along the peptide chain
has also been found in other proteins (Tainer et al. 1984,
1985; Westhof et al. 1984) and has been used to develop
algorithms for predicting the location of continuous
epitopes in proteins (Karplus & Schulz 1985; Parker et al.
1986; Pellequer et al. 1991). The correlation probably arises
because £exible segments in proteins tend to correspond to
N- and C-terminal segments (Thornton & Sibanda 1983)
and to surface loops that are more likely to mimic the
conformation of peptides in solution than regions of
constrained secondary structure. Antibodies speci¢c for
elements of secondary structure such as helices also exist,
but they are only detected when longer, structured
peptides are used in the immunoassays (Al Moudallal et al.
1985;Van Regenmortel 1986).
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Figure 1. Electron micrographs showing the binding of Mabs
to TMV adsorbed on antibody-coated grids. Bound Mabs
were revealed by gold-labelled antiglobulin reagent. Note that
most TMV particles are aggregated end to end. (a) Anti-
neotope Mab 253P (1/50 000) can be seen to bind over the
entire length of virus particles. (b) Anti-metatope Mab 16P
(1/20 000) binds only to one extremity of the particles. The
bar represents 150 nm (Dore et al. 1988).

Table 1. Continuous epitopes identi¢ed in dissociated TMVCP

position in
sequence

detected
polyclonal
antisera

with
mono-
clonal

antibodies

correlated
with

segmental
mobilitya reference

1^10 + 7 + Altschuh et al.
1983

19^32 + 7 + AlMoudallal et
al. 1985

34^39 + 7 + Altschuh et al.
1983

55^61 + 7 + Altschuh &Van
Regenmortel
1982

62^68 + 7 + Milton & Van
Regenmortel
1979

80^90 + + + AlMoudallal et
al. 1985

105^112 + + + Benjamini 1977
115^134 + + 7 AlMoudallal et

al. 1985
134^146 + + 7 AlMoudallal et

al. 1985
153^156 + + + Anderer 1963

aData fromWesthof et al. (1984)
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Discontinuous epitopes in proteins are usually identi¢ed
by X-ray crystallography of antigen^antibody complexes
(Braden & Poljak 1995). In the case of TMV, the presence
of discontinuous epitopes at the surface of virions was
demonstrated by analysing the ability of Mabs prepared
against intact virions to cross-react with viral mutants,
with other tobamoviruses, and with dissociated viral sub-
units (Altschuh et al. 1985). Using computer-generated
images of the surface residues of TMVCP, it was possible to
identify clusters of residues that are probably part of
discontinuous epitopes (Dore et al.1987).

5. MAPPING OF TMV NEOTOPES AND METATOPES

Several cryptotopes of TMVCP have been located
fairly precisely because the corresponding anti-cryptotope
Mabs reacted with natural or synthetic fragments of the
viral protein (Benjamini 1977; Tri¢lie¡ et al. 1991; Van
Regenmortel 1986). This approach to epitope mapping
was not feasible with neotopes and metatopes because
none of the corresponding Mabs reacted with any peptide
fragments of TMVCP. Some information on the location
of a limited number of neotopes and metatopes onTMV
particles was obtained by immunoelectron microscopy.
Anti-neotope antibodies were found to react along the
entire length of the viral rods, whereas some anti-meta-
tope antibodies reacted only with one extremity of the
virus particle (Dore et al. 1988, 1990).

The mapping of epitopes on the surface of proteins is
usually done by double-sandwich ELISA, using all
possible pairwise combinations of a panel of Mabs. If the
second labelled Mab is able to bind to the protein antigen
captured by the ¢rst Mab, it is concluded that the two
Mabs bind to two distinct, non-overlapping epitopes.
However, di¤culties can be encountered when this
approach is used with viral subunits since these tend to
adsorb strongly to the plastic of microtitre plates. When
TMVCP is captured on an ELISA plate by a ¢rst layer of
Mabs adsorbed to the plastic, it is di¤cult to totally
prevent additional non-speci¢c adsorption of the viral
protein to the plastic. For this reason, Mabs are usually
tested as the second antibody in ELISA by measuring
their capacity to react with TMVCP trapped by a ¢rst
layer of polyclonal antibodies (Dekker et al. 1989).
However, in such an ELISA format, it can never be
excluded that the conformation of the viral protein is
altered by the initial binding of the capturing antibody.
Such a conformational change may then allow the second
Mab to bind the immobilized TMVCP, although it would
have been unable to react with free TMVCP. This
phenomenon occurred in initial mapping experiments in
which several anti-TMV Mabs (7V, 42P, 67P and 249P)
were identi¢ed as anti-metatopes (Al Moudallal et al.
1985; Altschuh et al. 1985). Later work using biosensor
technology showed that these antibodies were actually
anti-neotopes and were unable to react with free TMVCP
molecules (Saunal & Van Regenmortel 1995b). Such
erroneous interpretations arise because it is not possible,
using ELISA, to visualize each of the successive binding
steps in the assay, as is done for instance in a biosensor
instrument. In double-antibody-sandwich ELISA, the
binding of the second antibody is needed to reveal the
initial binding of the ¢rst capturing antibody, and it

cannot be excluded that a conformational change
occurred in the antigen as a result of the reaction with
the ¢rst antibody. Using the biosensor technology, it
was indeed possible to show that TMVCP captured by
a ¢rst anti-metatope Mab underwent a conformational
change, which then allowed it to be recognized by an
anti-neotope Mab (Dubs et al. 1992; Saunal & Van
Regenmortel 1995b).

The introduction in 1990 of biosensors based on surface
plasmon resonance has greatly simpli¢ed the mapping of
epitopes (Daiss & Scalice 1994; FÌgerstam et al. 1990).
Biosensor instruments make it possible to visualize the
antigen^antibody binding process as a function of time
by following the increase in refractive index that occurs
when one of the interacting partners binds to its ligand
immobilized on the surface of a sensor chip. The concen-
tration of molecules that bind to the sensor-chip surface
(expressed as resonance units or RU) is monitored
continuously over time and is registered as a sensorgram.
None of the reactants needs to be labelled, which avoids
possible artefactual changes in binding properties
resulting from labelling (FÌgerstam & Karlsson 1994;
Malmqvist 1993). The most widely used biosensor instru-
ment is the BIAcoreTM (BIAcore AB, Uppsala, Sweden).

Since the binding stoichiometry observed in the
BIAcore is easily calculated from the molar ratio of
bound antibody/antigen, it is a simple matter to ascertain
whether Mabs bind to only one extremity of TMV
particles or along the entire length of virions. Such an
experiment is illustrated in ¢gure 2, which shows the
binding of anti-metatope Mabs 5V and 25P to TMV
particles ¢rst immobilized by an anti-neotope Mab. The
molar ratio of bound Mab 25P/TMV was found to be
about ten, indicating that the antibody bound only to one
end of the virion. The molar ratio of Mab 5V/TMV was
about 300, indicating that this antibody bound to the
entire surface of the particle. Although the anti-metatope
Mabs studied earlier by immunoelectron microscopy
(Dore et al. 1988, 1990;) were all found to react with only
one surface of the subunit (surface E in ¢gure 3),
biosensor experiments revealed that other anti-metatope
antibodies recognized surface A of TMVCP (table 2 and
¢gure 3).

When anti-neotope Mabs, characterized by their
inability to capture dissociated viral subunits in the
BIAcore, were analysed in the same way, some of the anti-
bodies gave high molar ratios of bound Mab/TMV indi-
cating that they were binding to surface A. Others gave
ratios of only 5^15 even when a considerable excess of
Mab was used, indicating that the antibodies were
binding to surface E (Saunal & Van Regenmortel 1995a).

A summary of data obtained with 20 Mabs showing
the location of their binding sites onTMV is presented in
table 2. In such assays, two epitopes will be recognized as
di¡erent only if they are far enough apart to allow simul-
taneous binding of the two Mabs. In some cases, however,
Mabs directed against distinct but neighbouring epitopes
will be prevented from binding concurrently to the
antigen surface because of steric hindrance.

The presence of previously undetected metatopes on
surface A of the viral subunit increased the range of two-
site binding assays that could be performed withTMVCP
monomers.This is due to the fact that it became possible to
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present TMVCP in such assays in two di¡erent
orientations using capturing anti-metatope Mabs speci¢c
for surfaces A and E, respectively (Saunal & Van
Regenmortel 1995a). Whenever pairs of anti-metatope
Mabs binding, respectively, to surface A or E were used in
the same assay, they were found to bind concurrently to
the same TMVCP molecule. In addition, some pairs of
Mabs recognizing the larger surface E were able to bind
simultaneously to the same viral subunit, but no case was
observed where two Mabs of type A bound to the same
TMVCP molecule (¢gure 4).

In some cases, TMVCP presented by an anti-metatope
Mab became capable of binding to an anti-neotope Mab
speci¢c for a di¡erent surface of the subunit, presumably
because a neotope conformation had been induced in the
monomeric viral subunit. For instance, anti-neotope
Mabs 7V and 249P of type A could bind to TMVCP
presented by an anti-metatope Mab of type E (16P or
151P) and in addition some anti-neotope Mabs of type E
(42P and 67P) were able to bind to TMVCP presented by
some anti-metatope Mabs of type A (5V or 19V) (Saunal
& Van Regenmortel 1995b). The induction of a neotope
conformation in monomeric TMVCP subunits following
binding of the subunit to a ¢rst antibody is likely to

mimic at least partly the conformational change that
occurs in the subunits when they assemble into a
quaternary structure. It should be noted, however, that
certain neotope speci¢cities cannot be induced in the
monomer in this manner as shown, for instance, by the
inability of anti-neotope Mabs 4P and 18V to recognize
TMVCP presented by any of the anti-metatope Mabs.
The most likely explanation is that such anti-neotope
antibodies recognize an epitope formed by the juxta-
position of residues from two neighbouring subunits.

The re¢ned mapping of TMV epitopes achieved with
the biosensor technology made it possible to investigate if
there was any correlation between the location of epitopes
on TMVCP and the capacity of the corresponding anti-
bodies to inhibit co-translational disassembly (Wilson
1984). Since the binding a¤nity and kinetics of antibodies
are easily measured in the BIAcore (Karlsson & Roos
1997; Saunal et al. 1997), it was also possible to establish if
there was any correlation between the a¤nity and
inhibitory capacity of the antibodies. Experiments with
anti-metatope Mabs showing the greatest variation in
inhibition capacity led to the conclusion that there was no
correlation between the capacity of antibodies to inhibit
co-translational disassembly of TMV and their binding
a¤nity (Saunal & Van Regenmortel 1995b).

During the course of two-site binding assays,
continuous dissociation and reassociation of the binding
partners occurs. When the kinetic dissociation rate
constant (kd) of the ¢rst capturing Mab1 is about 10ÿ3 sÿ1,
approximately half of the trapped antigen will become
dissociated during the 10min of Mab2 injection. On the
dissociated antigen molecule, the region of the surface
previously occupied by Mab1 may then bind to Mab2
and this will prevent reassociation of the antigen to
Mab1, resulting in a lower RU response. In view of this
dynamic competition between di¡erent Mabs, this type
of epitope mapping has been called kinetic mapping
(Saunal & Van Regenmortel 1995b). If the kd value of
Mab1 is faster than 10ÿ2 sÿ1, no meaningful data can be
obtained in such experiments, since practically all antigen
molecules will dissociate during the time frame of the
experiment.

The results of two-site binding assays were used to
establish the relative position of epitopes on surfaces E
and A of the TMVCP subunit (¢gure 4). The combining
sites of the antibodies were assumed to cover a minimum
surface of 600Ð in a circular footprint (Braden & Poljak
1995). Usually pairwise interaction data give information
only on the relative positions of epitopes (Daiss & Scalice
1994). However, in the case of TMVCP, it was possible to
construct a map depicting the actual physical location of
the epitopes on the subunit surface. Use was made of the
known speci¢city for surface A or E of each Mab, and of
the fact that Mab 29V speci¢c for surface A interfered
with the binding of Mabs 16P and 47P speci¢c for surface
E.

The epitope map shown in ¢gure 4 was useful for
understanding the mechanism by which certain anti-
TMV antibodies are able to block the disassembly of
TMV by ribosomes (Saunal et al. 1993). Mabs 25P 151P
167P 181P and 188P which possessed the strongest inhibi-
tory capacity were found to bind to the region of surface
E that is closest to the central axis of polymerized
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Figure 2. Sensorgrams used for determination of binding sites
of anti-neotope and anti-metatope antibodies on TMV
particles. Phase (a) corresponds to the injection of capture
anti-neotope Mab 253P (ascitic £uid diluted 1/10). About
700 RU were bound. Phase (b) corresponds to 10 ml of TMV
(100 mgmlÿ1) injection (ca. 2500RU). Phase (c) corresponds
to the saturation of the rabbit anti-mouse globulins by means
of one 30 ml injection of non-speci¢c ascitic £uid (ca.
1500^2500 RU). Phase (d) corresponds to the binding of
Mabs 5V and 25V (10 ml injection of 1 mM Mab) along the
entire surface of the virus particle (sensorgram (a) with a
stoichiometry of Mab 5V/TMV of 300) or only at one
extremity of the rod (sensorgram (b) with a stoichiometry of
Mab 25V/TMV of 10), respectively. Phase (e) corresponds to
the regeneration phase with 100 mM HCl (10 ml). A £ow rate
of 5 mgminÿ1 was used during phases (a) to (e).
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TMVCP. Since this part of the subunit surface is known
to interact with the viral RNA, it seems likely that the
inhibitory Mabs act by sterically preventing the interac-
tion between RNA and ribosomes (Saunal & Van Regen-
mortel 1995b). Such antibodies, when expressed in plants,
may be useful for controlling virus infection. The mode of
action of the inhibitory antibodies resembles the neutrali-
zation mechanism operating when antibodies to animal
viruses prevent virions from interacting with cellular
receptors (Dimmock 1993).

6. DETERMINATION OF THE AFFINITY OF

ANTIBODIES TO TMV

Knowledge of the a¤nity of antiviral antibodies is
important for the proper design of immunoassays and for
understanding the biological activity of antibodies, for
instance in the neutralization of virus infectivity
(Dimmock 1993; Van Cott et al. 1994). In the past, virus^
antibody binding data were interpreted in terms of mono-
valent binding of antibody, mainly because the kinetics
for bivalent binding to the same virus particle were
thought to be unfavourable (Fazekas de St Groth 1962).

However, it seems that in some cases the presence of large
numbers of identical viral subunits at the surface of
virions may actually favour bivalent antibody binding.
The uncertainty concerning the monovalent or bivalent
nature of antibody binding to virus particles was resolved
in the case of TMV when it was shown that both types of
binding occurred depending on the antigen^antibody
ratio (Van Regenmortel & Hardie 1976).
Initial studies of TMV^antibody interactions by means

of classical Scatchard plots had used as antigenic valency
the number of identical protein subunits (2130) in the
virion. This gave rise to linear plots, which were inter-
preted erroneously as evidence for homogeneous antibody
binding (Mamet-Bratley 1966; Urbain et al. 1972).
However, when Scatchard plots of the type f/d versus nf
were used in the analysis instead of classical r/c versus sr
plots (Day 1990), the antigenic valency of the virus could
be determined experimentally and was found to be 800
instead of 2130, the di¡erence being due to steric
hindrance (Hardie & Van Regenmortel 1975). The
symbols used in these two types of Scatchard plots are the
following: f, ratio of bound antibody to total antigen; d,
free antibody concentration; r, ratio of bound antigen to
total antibody; c, free antigen concentration; n, antibody
valence; s, antigen valence. As expected with polyclonal
antibodies, heterogeneous antibody binding was observed
in the f/d versus nf plots and evidence for both monovalent
and bivalent antibody binding could be obtained (Van
Regenmortel & Hardie 1976) (¢gure 5).

At low antibody^antigen ratios, the two combining
sites of an IgG molecule bind to identical epitopes on the
same virus particle, a situation known as monogamous
bivalent binding characterized by a high functional
avidity. These results were obtained from binding assays
in which free antibody was separated from virus^
antibody complexes by centrifugation and quantitated by
spectrophotometry. More recently, it was shown that the
same type of Scatchard analysis could be done at much
lower antibody concentration by measuring the amount
of free antibody at equilibrium by ELISA titration (Azim-
zadeh & Van Regenmortel 1991; Azimzadeh et al. 1992). It
is important to assess if antibodies bind in a monovalent
or bivalent manner since the calculated antibody a¤nity
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Figure 3. Schematic model of the protein subunits of TMV in monomeric form and in the virus particle. Neotopes are found on
surface A' and E', metatopes are found on surfaces A, A', E and E', and cryptotopes are found on surfaces B, C and D. The type
of epitope present on surface F has not yet been de¢ned. The E0 extremity of the virion contains the 5' end of the RNA (Saunal &
Van Regenmortel 1995a).

Table 2. Location of metatopes and neotopes recognized by
various Mabs on di¡erent surfaces of TMV and TMVCP (see
¢gure 3)a

surfaces A and A'
molar ratio bound
Mab/TMVca. 300

surfaces E and E'
molar ratio bound
Mab/TMVca. 10

Mabs able to
capture TMVCP

anti-metatope Mabs
of type A: 5V, 6V,
17V, 19V, 29V,
236P

anti-metatope Mabs
of type E: 16P, 25P,
47P, 98P, 151P,
173P, 181P

Mabs unable to
capture TMVCP

anti-neotopeMabs
of type A: 7V, 18V,
249P, 253P

anti-neotope Mabs
of type E: 4P, 42P,
67P

aThe four categories of Mabs are de¢ned by their ability to
capture TMVCP subunits in the BIAcore and by their stoichio-
metry of binding to intactTMV particles.
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may be about two orders of magnitude lower in the case
of monovalent binding (Van Regenmortel 1997).

7. THE ANTIGENIC VALENCY OF TMV

Antigenic valency is de¢ned as the maximum number
of epitopes per antigen that can be simultaneously
occupied by antibody molecules (Singer 1965). According
to this de¢nition the valency is a constant parameter and
not a variable in£uenced by the ratio of antibody to
antigen (Van Regenmortel 1988). Although some authors
have assumed that the antigenic valency of TMV is equal
to the number of viral subunits, i.e. 2130 (Anderer et al.
1971; Mamet-Bratley 1966), the correct value is 800
(Azimzadeh & Van Regenmortel 1991). The di¡erence
between these two values is due to the fact that each anti-
body-combining site covers the surface of approximately
three viral subunits. The ratio 2130/800�2.7 is close to
the ratio of the molecular weights of a Fab fragment and
the TMV subunit (50 000/17500�2.9). It should be
emphasized that the antigenic valency of the TMV
particle is 800 even under conditions of extreme antigen
excess when only a few antibody molecules are bound to
each particle and each antibody has the choice to bind to
any of the 2130 free subunits.

Cowan & Underwood (1988) have developed a mathe-
matical model that describes the binding of antibody to a
multivalent antigen under conditions of steric hindrance.
This model predicts that the steric-hindrance e¡ect neces-
sarily results in curved Scatchard plots, also in the case of
homogeneous binding of Mabs.When Mabs bind toTMV
particles, the model predicts that f/d versus f plots will
approximate to a quadratic curve of the type shown in
¢gure 6. The intercept of the curve with the x-axis gives
the antigenic valency s and its intercept with the y-axis
gives the value uK where u is the total number of epitopes
(u�2130) on the TMV particle that could be recognized
by the Mab. In ¢gure 6, the straight lines correspond to
situations that would prevail in the absence of steric
hindrance. The line extrapolating to f�2130 on the x-axis
represents the hypothetical situation where an antibody
would have the same size as the viral subunit (17500,
resulting in no steric hindrance. The line extrapolating to
f�800 corresponds to the situation where the viral
subunit would have a size similar to that of a Fab
fragment (50 000), which again would remove the steric
e¡ect. According to the analysis of Cowan & Underwood
(1988), the usual procedure for calculating a¤nity
constants by ¢tting straight lines to experimental f/d
versus f data gives rise to erroneous a¤nity values, the
error being larger, the greater the ratio u/s.

When antibody^TMV binding data were analysed in
terms of the Cowan & Underwood model (1988), it was
found that the experimental data ¢tted a quadratic curve
better than a straight line (Pellequer & Van Regenmortel
1993a). However, the error in a¤nity-constant determi-
nation caused by ¢tting a straight line instead of a curve
leads to values that are wrong by only a factor of two, a
di¡erence that lies within the error of current methods of
antibody a¤nity measurements. In all TMV data sets
that were analysed (Pellequer & Van Regenmortel 1993a)
the value of u/s calculated by extrapolation of the ¢tted
curves to the y-axis was close to the value 2.7 predicted by
the Cowan & Underwood (1988) model, and better ¢ts
were always obtained when experimental points were
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Figure 4. (a) Schematic model of surfaces A and E of the
TMVCP subunit. (b) Schematic epitope map constructed
from pairwise interaction data with Mabs. Each
antibody-combining site was assumed to cover 600Ð2 in a
circular footprint. Mabs 25P, 151P and 181P inhibit strongly
the cotranslational disassembly of the virus. Mabs 188P, 167P,
17V and 29V possess less inhibitory activity, while the other
Mabs do not inhibit at all (Saunal & Van Regenmortel
1995b).
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Figure 5. Binding data of the interaction between TMV and
Mab 107P (intact IgG molecules). Monovalent binding of
antibody occurs preferentially in the region f�400 to f�800
and bivalent binding in the region f�0 to f�400. The two
portions of the plot extrapolate to s�773 and s/2�408,
respectively. Data were obtained as described by Azimzadeh
& Van Regenmortel (1991). From Pellequer & Van
Regenmortel (1993a).
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represented as curves instead of straight lines. In other
virus^antibody systems, the magnitude of the steric e¡ect
and the error in a¤nity-constant determination is likely
to be even smaller than with TMV, since the protein
subunits of most viruses tend to be larger than 17500Da
and the u/s ratio will thus be smaller. Detailed experi-
mental procedures for measuring the a¤nity constant of
TMV antibodies have been described in several reviews
(Azimzadeh et al. 1992; Pellequer & Van Regenmortel
1993a,b; Saunal et al. 1997; Van Regenmortel 1997).

8. FINE SPECIFICITY STUDIES OF TMV EPITOPES

AND PARATOPES BY RESIDUE SUBSTITUTIONS

AND MUTAGENESIS

It is well known that each residue of a continuous
epitope is not necessarily a residue in contact with the
combining site of the antibody, in which case it will not
contribute to the binding energy of interaction (Getzo¡ et
al. 1988; Van Regenmortel 1994). Participation of indivi-
dual residues of the epitope to the interaction can be
assessed by measuring the e¡ect of single amino-acid
substitutions on the kinetic rate constants of the inter-
action. When epitopes of TMVCP located in the peptides
125^136 and 134^146 were analysed in this way, it was
found that only a few of the residues in these peptides
contributed to the energy of interaction (Altschuh et al.
1992; Chatellier et al. 1996; Zeder-Lutz et al. 1993). In most
cases, substitutions in the peptide only a¡ected the disso-
ciation rate constant and not the association rate
constant. Kinetic analysis using the BIAcore was also
used to demonstrate the cooperative e¡ects of multiple
mutations in anti-TMV Fabs (Rau¡er-Bruyere© re et al.
1997). The results showed that certain residues located

away from the binding site were able to in£uence the
dissociation kinetics of antigen^antibody interactions.
Deviations from a simple additivity e¡ect of multiple
mutations were observed with respect to dissociation
kinetics and could be quanti¢ed unambiguously because
of the precision of biosensor measurements, which
allowed 20% di¡erences in the dissociation rate constant
to be measured in a reliable manner (Rau¡er-Bruyere© re
et al. 1997).

9. USE OF ANTIGENIC PROPERTIES IN THE

CLASSIFICATION OF TOBAMOVIRUSES

TMV is the type species of the genus Tobamovirus,
which comprises a total of 13 species (Murphy et al. 1995).
Many of these viruses were initally considered to be
strains of TMV on the basis of antigenic cross-reactions.
In order to quantify the antigenic similarity between
di¡erent tobamoviruses, a parameter known as the
serological di¡erentiation index (SDI) was introduced
(Van Regenmortel & Von Wechmar 1970). SDI values
correspond to the average number of twofold dilution
steps separating homologous from heterologous antiserum
titres. A close correlation was found to exist between the
antigenic distance between individual tobamoviruses
expressed as SDI values and the degree of sequence di¡er-
ence in the respective coat proteins (Van Regenmortel
1975). SDI values can be obtained from precipitin tests or
from ELISA experiments, which require much smaller
quantities of reagents (Dubs & Van Regenmortel 1990;
Jaegle & Van Regenmortel 1985). It is customary to
consider that two viruses that di¡er antigenically by an
SDI value larger than four or ¢ve correspond to separate
viral species (Van Regenmortel et al. 1997).
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